7.3 The Law of Cosines

As mentioned in section 7.1, if we are given two sides and the included angle or three sides of a triangle, then a unique triangle is determined. These are the SAS and SSS cases and require using the law of cosines to solve.

LAW OF COSINES

In any triangle ABC, with sides of lengths a, b, and c,

- \(a^2 = b^2 + c^2 - 2bc \cos A \)
- \(b^2 = a^2 + c^2 - 2ac \cos B \)
- \(c^2 = a^2 + b^2 - 2ab \cos C \)

Guidelines for solving a triangle given SAS:

1. Find the third side using the *Law of Cosines*
2. Find the smaller of the two remaining angles using the *Law of Sines*
3. Find the remaining angle using \(\alpha + \beta + \gamma = 180^\circ \)

Guidelines for solving a triangle given SSS:

1. Find the largest angle using the *Law of Cosines*
2. Find either of the two remaining angles using the *Law of Sines*
3. Find the remaining angle using \(\alpha + \beta + \gamma = 180^\circ \)

Solve each triangle

1. \(A = 41.4^\circ, b = 2.78, c = 3.92 \)

 ![Triangle](triangle.png)

 Solution: Given SAS

 \[
 a^2 = b^2 + c^2 - 2bc \cos A \\
 a^2 = 2.78^2 + 3.92^2 - 2(2.78)(3.92) \cos 41.4^\circ \\
 a = \sqrt{2.78^2 + 3.92^2 - 2(2.78)(3.92) \cos 41.4^\circ} \\
 a = 2.60
 \]

 Angle B is the smaller of the two remaining angles

 \[
 \frac{\sin B}{b} = \frac{\sin A}{a} \Rightarrow \frac{\sin B}{2.78} = \frac{\sin 41.4^\circ}{2.60} \\
 \sin B = \frac{2.78 \sin 41.4^\circ}{2.60} \Rightarrow \text{So } B = \sin^{-1} \left(\frac{2.78 \sin 41.4^\circ}{2.60} \right) = 45^\circ
 \]

 \(41.4^\circ + 45^\circ + C = 180^\circ \) so \(C = 93.6^\circ \)

 Solution \(A = 41.4^\circ, B = 45^\circ, C = 93.6^\circ, a = 2.60, b = 2.78, c = 3.92 \)
2. $B = 112.8^\circ$, $a = 6.28$, $c = 12.2$

Solution: Given SAS

\[b^2 = a^2 + c^2 - 2ac \cos B \]
\[b^2 = 6.28^2 + 12.2^2 - 2(6.28)(12.2) \cos 112.8^\circ \]
\[b = \sqrt{6.28^2 + 12.2^2 - 2(6.28)(12.2) \cos 112.8^\circ} \]
\[b = 15.7 \]

The smallest of the two remaining angles is A

\[\sin \frac{A}{a} = \frac{\sin B}{b} \quad \text{so} \quad \sin \frac{A}{6.28} = \frac{\sin 112.8^\circ}{15.7} \]
\[\sin A = \frac{6.28 \sin 112.8^\circ}{15.7} \quad \text{So} \quad A = \sin^{-1}\left(\frac{6.28 \sin 112.8^\circ}{15.7}\right) = 21.6^\circ \]

$112.8^\circ + 21.6^\circ + C = 180^\circ$, therefore $C = 45.6^\circ$

Solution: $A = 21.6^\circ$, $B = 112.8^\circ$, $C = 45.6^\circ$ $a = 6.28$, $b = 15.7$, $c = 12.2$

3. $a = 28$, $b = 47$, $c = 58$

Solution: Given SSS

The largest angle is the angle opposite the longest side which is angle C

\[c^2 = a^2 + b^2 - 2ac \cos C \]
\[58^2 = 28^2 + 47^2 - 2(28)(47) \cos C \]
\[58^2 - 28^2 - 47^2 = -2(28)(47) \cos C \]
\[\cos C = \frac{58^2 - 28^2 - 47^2}{-2(28)(47)} \quad \text{So} \quad C = \cos^{-1}\left(\frac{58^2 - 28^2 - 47^2}{-2(28)(47)}\right) = 98.1^\circ \]

\[\frac{\sin A}{a} = \frac{\sin C}{c} \quad \text{So} \quad \frac{\sin A}{28} = \frac{\sin 98.1^\circ}{58} \]
\[A = \sin^{-1}\left(\frac{28 \sin 98.1^\circ}{58}\right) = 28.6^\circ \]

$A + B + C = 180^\circ$

$28.6^\circ + 98.1^\circ + B = 180^\circ$, therefore $B = 53.3^\circ$

Solution: $a = 28$, $b = 47$, $c = 58$, $A = 28.6^\circ$, $B = 53.3^\circ$, $C = 98.1^\circ$
4. Airports A and B are 450 km apart, on an east-west line. Tom flies in a northeast direction from A to C. From C he flies 359 km on a bearing of 128.7° to B. How far is C from A?

\[450 \]

By corresponding angles, angle B is the complement of 51.3°, so angle B is 38.7°. By the law of cosines

\[b^2 = a^2 + c^2 - 2ac \cos B \]

\[b^2 = 359^2 + 450^2 - 2(359)(450) \cos 38.7° \]

\[b = \sqrt{359^2 + 450^2 - 2(359)(450) \cos 38.7°} = 281 \text{ km} \]

5. A ship is sailing east. At one point, the bearing of a submerged rock is 45°20’. After the ship has sailed 15.2 miles, the bearing of the rock has become 308°40’. Find the distance of the ship from the rock at the latter point.

Solution: 308°40’ − 270° = 38°40’ and 90° − 45°20’ = 44°40’, therefore

\[180° - 38°40’ - 44°40’ = 96°40’ \]

\[\frac{a}{\sin 44°40’} = \frac{15.2}{\sin 96°40’} \]

\[a = \frac{(\sin 44°40’)15.2}{\sin 96°40’} = 10.8 \text{ miles} \]
6. An airplane flies 180 miles from point X at a bearing of 125°, and then turns and flies at a bearing of 230° for 100 miles. How far is the plane from point X?

The included angle is $180° - 55° - 50° = 75°$. By the law of cosines

$$b^2 = 180^2 + 100^2 - 2(180)(100)\cos 75°$$

$$b = \sqrt{180^2 + 100^2 - 2(180)(100)\cos 75°} = 182 \text{ miles}$$ from point X