1. Use the specified row transformation to change the matrix.

\[
\begin{bmatrix}
1 & 8 & 7 \\
-2 & 9 & -1 \\
6 & 7 & 0
\end{bmatrix}
\]

2 times row 1 plus row 2

What is the transformed matrix?

\[
\begin{bmatrix}
1 & 8 & 7 \\
\square & \square & \square \\
6 & 7 & 0
\end{bmatrix}
\]

Answers 0

25

13

2. Use the Gauss-Jordan method to solve the system of equations. If the system has infinitely many solutions, give the solution with \(z \) arbitrary.

\[
\begin{align*}
x + y - 3z &= -18 \\
3x - 3y + 2z &= -4 \\
x + 3y - 3z &= -20
\end{align*}
\]

The solution set is \(\{(\square, \square, \square)\} \).

(Type an exact answer in simplified form. If the solution is the empty set, type N for each coordinate. If there are infinitely many solutions, type an expression involving \(z \) for each coordinate where \(z \) represents all real numbers.)

Answers -5

-1

4
3. Use Cramer’s rule to solve the system of equations. If \(D = 0 \), use another method to determine the solution set.

\[
\begin{align*}
3x + 3y - 6z &= 10 \\
3x + y - z &= 9 \\
-x - y + 2z &= 4
\end{align*}
\]

The solution set is \(\{\boxed{\,} \} \).

(Type an exact answer in simplified form. If the solution is the empty set, type \(N \) for each coordinate. If there are infinitely many solutions, type an expression involving \(z \) for each coordinate where \(z \) represents all real numbers.)

Answers

\[
\begin{align*}
N \\
N \\
N
\end{align*}
\]

4. Give all solutions of the nonlinear system of equations, including those with nonreal complex components.

\[
\begin{align*}
y &= x^2 + 8x + 10 \\
x + y &= 2
\end{align*}
\]

The solution set is \(\{\boxed{\,}, \boxed{\,}\} \).

(Type an ordered pair. Type an exact answer, using radicals as needed. Express complex numbers in terms of \(i \). Use a comma to separate answers as needed. Type \(N \) if the solution is the empty set. Type \(I \) if there are infinitely many solutions.)

Answer: \((-1,3),(-8,10)\)
5. Plot the graph of the following ellipse, and then identify the domain, range, and center of the ellipse.
\[
\frac{(x - 3)^2}{25} + \frac{(y + 2)^2}{4} = 1
\]
What is the domain?
○ [−2,8]
○ [−4,0]
What is the range?
○ [−2,8]
○ [−4,0]
The center is ___.
(Type an ordered pair.)
Answers
D the first choice
d the second choice
\((3, -2)\)

6. Find the equation of an ellipse satisfying the given conditions.

Foci: (−2, 0) and (2, 0); length of major axis: 8

Choose the correct equation of the ellipse.

○A. \(\frac{x^2}{16} + \frac{y^2}{12} = 1\)
○B. \(\frac{x^2}{4} + \frac{y^2}{16} = 1\)
○C. \(\frac{x^2}{64} + \frac{y^2}{60} = 1\)
○D. \(\frac{x^2}{12} + \frac{y^2}{16} = 1\)

Answer: A
7. Graph the equation. Give the domain and range. Determine whether the graph is a graph of function.

\[x = \sqrt{1 - \frac{y^2}{9}} \]

Choose the correct graph on the right.

Give the domain.

☐ (Type your answer in interval notation.)

Give the range.

☐ (Type your answer in interval notation.)

Is the graph a graph of a function?

☐ Yes

☐ No

Answers: C

\[[0,1] \]

\[[-3,3] \]

the second choice

8. A one-way road passes under an overpass in the shape of half an ellipse, 35 ft high at the center and 20 ft wide. Assuming a truck is 12 ft wide, what is the tallest truck that can pass under the overpass?

The tallest truck that can pass under the overpass is ☐ ft tall.

Answer: 28
9. Sketch the graph of the hyperbola. Determine the foci and the equations of the asymptotes.

\[
\frac{(y - 2)^2}{9} - \frac{(x - 2)^2}{16} = 1
\]

Choose the correct graph of the hyperbola.

☐A.

☐B.

☐C.

☐D.

The foci are [].
(Use a comma to separate answers. Type an ordered pair. Type an exact answer.)

The asymptotes are \(y = \) [] and \(y = \) [].
(Write in slope-intercept form using integers or fractions. If one of the asymptotes has a negative slope, write the equation’s right side in the second box.)

Answers

\[(2, 7), (2, -3) \]

\[\frac{3}{4}x + \frac{1}{2} \]

\[-\frac{3}{4}x + \frac{7}{2} \]
Graph the equation. Give the domain and range, and determine whether the graph is the graph of a function.

\[\frac{y}{10} = \sqrt{1 + \frac{x^2}{81}} \]

What is the domain?

☐ (Type your answer in interval notation.)

What is the range?

☐ (Type your answer in interval notation.)

Is the graph of the equation the graph of a function?

☐ Yes

☐ No

Answers

C

\((-\infty, \infty)\)

\([10, \infty)\)

the first choice
11. Find the equation of a hyperbola satisfying the given conditions.

vertices at (0,4) and (0, -4); asymptotes $y = \pm \frac{1}{2}x$

Choose the correct equation.

- $\text{O A. } \frac{y^2}{16} - \frac{x^2}{64} = 1$
- $\text{O B. } \frac{x^2}{16} - \frac{y^2}{64} = 1$
- $\text{O C. } \frac{y^2}{2} - \frac{x^2}{4} = 1$
- $\text{O D. } \frac{x^2}{4} - \frac{y^2}{16} = 1$

Answer: A

12. Find the value of the determinant.

$$\begin{vmatrix} 2 & 8 & 5 \\ 8 & 1 & 1 \\ 9 & -2 & -1 \end{vmatrix}$$

The determinant value is \square.

Answer: 13

13. Use Cramer's rule to solve the system of equations. If $D = 0$, use another method to determine the solution set.

$$-2x + 2y = 3$$
$$-6x + 6y = 9$$

The solution set is $\{\square\}$.
(Simplify your answer. Type an ordered pair. If there are infinitely many solutions, type an expression involving y for each coordinate of the ordered pair where y represents all real numbers. Type N if the solution is the empty set.)

Answer: \left(\begin{array}{c} \frac{3 - 2y}{2} \\ y \end{array}\right)
14. Give all solutions of the nonlinear system of equations, including those with nonreal complex components.

\[5x^2 + y^2 = 1 \]
\[x^2 + 2y^2 = 11 \]

The solution set is \{ (_ , _) \}.

(Type an ordered pair. Use a comma to separate answers as needed. Type an exact answer, using radicals as needed. Type an integer or a fraction. Express complex numbers in terms of i.)

Answer: \((i, \sqrt{6}), (-i, \sqrt{6}), (i, -\sqrt{6}), (-i, -\sqrt{6}) \)

15. Let the supply and demand equations for a certain commodity be the following.

supply: \(p = \sqrt{0.1q + 25} - 1 \)
demand: \(p = \sqrt{36 - 0.1q} \)

a. Find the equilibrium demand.
b. Find the equilibrium price (in dollars).

a. The equilibrium demand is \(_ \) units.
b. The equilibrium price is \$_\.

Answers 110
5.00