Finding the Domain

Definition of Domain: For any equation, the values of \(x \) make up the domain (it's what \(x \) can be).

Examples: If \(g(x) = \{(3.5), (-2.7), (8,0)\} \) the \(x \) values make up the domain so \(\{3,-2,8\} \) is the domain of \(g \).

EXAMPLES ON HOW TO FIND THE DOMAIN:

1. **Radicals of even root:** The radicand can never be negative so to find what \(x \) can be, set the radicand to \(\geq 0 \).

 \[
 \begin{align*}
 y &= \sqrt{x-4} \\
 x - 4 &\geq 0 \\
 x &\geq 4 \\
 \text{domain is } [4, \infty)
 \end{align*}
 \]

 \[
 \begin{align*}
 y &= \sqrt{x^2 + 7x + 12} \\
 x^2 + 7x + 12 &\geq 0 \\
 (x + 3)(x + 4) &\geq 0 \\
 \text{domain is } (-\infty,-4] \cup [-3, \infty)
 \end{align*}
 \]

2. **Fractions:** (With a variable in denominator) the denominator can never equal zero, so set the denominator to zero to find what \(x \) can't be.

 \[
 \begin{align*}
 f(x) &= \frac{3x+1}{x-2} \\
 x - 2 &= 0 \\
 x &= 2 \\
 \text{domain is all } \#s \text{ except } 2 \\
 \text{the interval is } (-\infty,2) \cup (2, \infty)
 \end{align*}
 \]

 \[
 \begin{align*}
 g(x) &= \frac{4}{x^2 - 9} \\
 x^2 - 9 &= 0 \\
 (x - 3)(x + 3) &= 0 \\
 x &= 3 \text{ or } x = -3 \\
 \text{domain is all } \#s \text{ except } -3 \text{ and } 3 \\
 \text{the interval is } (-\infty,-3) \cup (-3,3) \cup (3, \infty)
 \end{align*}
 \]

3. The domain is \((-\infty, \infty) \) in the following examples:

 a) any linear equation such as \(f(x) = 3x + 7 \)
 b) any polynomial such as \(y = x^2 + 2x - 3 \)
 c) where \(x \) is within the absolute value bars such as \(y = | -3x + 7 | \)
 d) if either variable is under a radical with an odd root such as \(y = \sqrt[3]{x - 6} \)
 e) if either variable is to an odd exponent such as \(y^3 = x + 4 \) or \(y = x^5 \)
 f) if it is an inequality such as \(y > x + 8 \)